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We can approximately replace the infinite system (2.10) by a finite system of 11 equa- 
tions with 11 u~nowns, This finite system was solved several times in application to 
distinct values of the parameter E. The results of the calculations are presented in 

Table 1. 
Knowing the coefficients As,,, we can easily find the quantities c and p (x). 

Presented below are values of the coefficient y (formula (3.2)) for some E 

& -=o.oz 0.0; O.l() 0.13 0.20 

7 = 1.5260 1 ,2iXI 1.044% 0.92184 u.8333: 

Tables of the Chebyshev polynomials [6] were used in calculating the function p (x) 
by means of (3.3). Values of the quantity al”-‘p (2) are presented in Table 2 for some 
t: and xla. 

The authors are grateful to L, P, Matveev and N, P. Chumykin for aid in performing 
the calculations. 
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The problem of impressing a circular stamp into the upper face of a homogene- 
ous elastic layer is considered. The layer rests on a stiff base weakened by a cir- 
cular hole coaxial with the stamp and of the same radius, The surface of the 

stamp base possesses axial symmetry. The parts of the layer face outside the 
limits of contact are stress-free ; there is no friction or cohesion between the 
layer and the stamp nor between the layer and the base. 
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A system of two integral equations with two unknown functions solving the prob- 
lem is obtained by using the Hankel transform. This system is reduced success- 
fully to Fredholm equations of the second kind. Approximate solutions of the 
equations are obtained for the flat stamp be the small parameter method. 

Similar problems about a layer, but only with other boundary conditions, have 
been posed and solved in [l - 41, say. But, insofar as the author knows, the bound- 
ary conditions in all such problems were assumed different only on one face of 
the layer and the problem was reduced by the integral transform method to one 

integral equation. Here the boundary conditions are “mixed” on both the upper 

and lower faces, hence, a system of two equations is obtained. 

1. Let iv, 11 be the elastic characteristics of a layer 0 < s 6 /ll. (1 +: 52 + y2 ( 
00; uT. u, are displacement components, and or, CT,, T,, are the stress components in 

a cylindrical coordinate system (see Fig. 1) in the axisymmetric case. The stamp radius 

is assumed to equal unity. Then the boundary conditions of the problem are: 

staj===: if z=Oand r<l 1” t-.._1 

Here f (r) is a function defining the base of the 

Fig. 1 

It is known [S] that in the presence of axial sym- 
metry the strain and stress components are expres- 
sed in terms of one biharmonic function @ 

Let us take the general solution of the biharmonic equation in the form of a Hankel 

transform 
@ (F? 2) = y p (7, 2) JO (72) rt+l, (1.2) 

p (y, z) =“(A + Bz) e--fz + (C + Dz) eyz 

The boundary condition T,., = 0 at z = 0 and z = h permits elimination of two 

out of the four functions 
A = A (y), . . ., D = D (y) 

After elementary computations, we obtain by using the last equalities in (1.1) and (1.2) 

P (y, z) = A [(I + az) ch yz - (1 - ykz) sll yzl + 0.3) 

C [(l + bz) ch yz + (1 - ykz) sh yz] 



Axiaymetrlc &rain of an elastic layer 115 

k = 1 + p/h, a = 2 (1 + ykz) sh yh 

b = 2 (ykz - I) sh y/z, ~=@zch~~+shyh 

Now, we substitute its representation (1.2). (1.3) instead of cf, (r, z) in the right sides 

of the second and fourth equations in (1.1). We have 
5- 

(1.5) 

we represent U, (r, 0) as an integral containing a new unknown function ‘p (t) 

u~(T, 0) - ~~(~~~~ 1 sin(~~~~~(~r)~~ U*6f 
0 0 

In this case, the boundary condition U, (r, 0) =: 0 for r > 1 is satisfied automatically 

by virtue of (1.5). If r-< 1, 

For the settling under the stamp to be bounded, cp (0) ~7-. 0 must be assumed and this 
condition must henceforth be satisfied. If it were also assumed that rp’ (t) is continuo~ 

on the segment [O, I], then 

zL, (r, 0) = rp (1) In (1 $ 1/l - r2) - J cp’ (t) In (t _t v/t2 - ra) dt G.V 
P 

Changing the order of integration in the integral in (I. 6) and setting z = 0 in the first 
equation in (1.4), we arrive at the equation 

1 

In exactly the same way, in order to satisfy the boundary condition o, (r, h) = 0 for 

r> 1, weset 
&o, (r, h) = S ‘11) (t) dt 1 cos (rt) 7J, (yr) dy (1.9) 

0 0 

where 9 (t) is a new unknown function, wherein we assume that it is also continuously 

differentiable, We have 
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$((I) 5 ~~(7~)siIl~~~ - ~~‘~~~~~ ~~~~7~)sin(7~)~7 
0 ;t 0 

By virtue of (1.5) the boundary condition cTz(r, h) = 0 for r > 1 is satisfied auto- 
matically. If r < 1, then , 

(1.10) 

Let us set z = h into the second formula in (1.4) and let us change the order of inte- 

gration in the right side of (1.8). We then obtain 

r3 {t(h - 1) a + ky -t 72k”hl ch (yh) - yh (k + ah) sh (y/z)) A + (1.11) 

Ts {[(k - 1) b - Jcy + r’k2h] ch (rh) - yh (Ii $- t&f sh (yh)) C - 

q(t) sin (yf) dt 
0 

Now, we solve the system (1, 8), (1,ll) for .4 and C . We substitute the values found 

into the right sides of (1.4). and setting z = h and z = 0 therein, respectively, we 
require compliance with the boundary conditions a, (0, r) = 0, u, (h, r) = f (r) for 

r< 1. 
We then obtain a system of integral equations in the unknowns 9 (t) and Q (t) 

02 

s ’ [~,I (7) (I) (Y) + b”, (Y) y (r)l Jo(v) d7 == 0 
a 

(1.12) 

m 
r* 

I f&1 (7) CD (Y) +- 6~2 (rf ‘Y (711 Jo (74 dy -= f F-1 
0 

Here 

(P(T) = (‘pit) 

1 

sin(7t)dt- --‘i’(l)~+~~(r’(t)eos(rt)dt (1*13) 

0 0 

611 (Y) = - 2 (sh2 yh - r”h2), 13~~ (r) = -& (T/Z ch yh _i- sh ah) 

&I (r) = -& (rh ch yh -+ sh 7h). l&(7) -= - &sti'7h 
." 

.A0 = sh (yh) ch (yh) + $2, h_ _YZ 1 -+ $3. 

The following asymptotic formulas can be obtained for (sij (v) (i. j = 1, 2) as 
yh+ !- co: 

6,, (y) - - + 7 - A$ p/+2711, K1, (y) ,5 zyf-‘!” (1.14) 

6,, (7) - Q+P-i’f, 6,? (7) _ I+ _+ $!! @-ifI 

Taking account of these formulas, it can be shown that the integrals in the left sides of 

(1.12) converge for any r > 0 . 
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The problem evidently reduces to solving the system (1.12). In particular, if cp (t) and 
$ (t) are found. We determine the stress at the stamp contact by (1.10) and the layer 
displacement over the hole by (1.7). The stresses and displacements within the layer 
are determined by (1.4) in which the functions A (v) and C (y) are easily expressed 

in terms of ($ and +. Obtaining numerical results can certain turn out to be a tedious 

job. 

2, Let us return to the system Il. 2). If their integral representations (1.13) are sub- 
stituted instead of CD (y) and Y (y) in (l.lZ), and the order of integration is changed 

(the validity of this operation can be given a foundation), then this system can be repre- 

senred as follows: r 
Ii ’ 

To l/r%__ t” a cp’o dt = cp(1) Zi,, (r, 1) + Tc) (1) R12 (r, 1) - (2.1) 

( 19’ it) K1l (f, tf -I- 9 (4 K12 P-, f)l dt 
0 

s ’ [cp’ (t) K21(r, 0 -t +’ (t) IL (r, t)l f& - /’ (r) 
0 

&I ir, t> = S P21 (7) cos (rt) .I1 (yr) 87, 1’21(7) = 621 
0 

The second equation in the system (1.12) was differentiated with respect to r during 
the manipulation, hence, the function f’ (r) appeared in the right side of the equality 

in the system (2.1). 
The singularities inherent in the kernels of the equations in the system (1.12) have 

here already been extracted explicitly, and they are in the left sides of (2.1). The ker- 
nels in the right sides .Kij (r, t) (i, j = 1, 2) are continuous functions in the square 
[O, I] x [O, 11. Indeed, it follows from (1.14) that Pij (y) tends to zero as yh + 
+ 00 , at least as ylLe-Y’L, and a conclusion about the continuity of the kernels can 

hence be deduced. 
The inverses are known for the operators in the left sides of (2.1) ; if the right sides of 

(2.1) are temporarily considered known, and we set I = r sill 8. we obtain the Schloe- 
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milch equation nz 

’ 
s 

F (rsiuO)dO --_ g(r) 

0 

whose continuous solutions are [l] 

F(x) - $ [g(O) -~-~~~p’(xsitt0)dl)] 

II 

Since the right sides of (2.1) are actually unknown, this formula generates new integral 
equations. Omitting the elementary but awkward manipulations, let us present the results 

(for the case of a flat stamp f’ (r) = 0) 

Here 

cp’ (x) = ArrII (1, x) + 1:rITlz (1, J) - (2.2) 
1 

' 
a 
[v'(t) nil (t, 4 + q(t) n12 (t, 41 dt 

&) = A&1(1, x)+Br.L(l, z)- 
1 

\ 
' [q'(t) &I(4 4 + v(t) b2 (h 41 a 
6 

A =‘P(l), B =$(I) (2.3) 

y 3 
Hll(4 4= -$ \ k Pll(r)cos(rt)cos(~~)d~ (2.41 

0 

Just as the kernels Kij, the kernels IIij (t, X) are continuous in 
hence (2.2) are Fredholm equations. 

the square [0, l] x [0, 11, 

The two arbitrary constants A and B in the system (2.2) are determined as follows. 

We find the solution of the system (2.2) as 

cp’ (t) = Acp, (t) -t f& CL), $ (t) = A$dt) + Wz (0 

In order to satisfy the condition cp (0) = 0 imposed earlier, we must assume 

CP(x)= “[‘Fr(~)dt+B[rp,(t)dt 
0 0 

11 (z) = Ai *I (t) dt -+ B j & (t) dt + C 

0 0 



Axlsymmetrlc strain of an elastic layer 119 

where C is the constant of integration. 
The conditions (2.3) reduce to a system of two equations in A, B and C . We deter- 

mine A and B from this system to the accuracy of the factor C : A = CA,, B = 
CB,. Therefore 

‘J’(z) = C [A,tq$x)dx + B,,[& (x) dx] == C*“(x) 
0 0 

Finally, in order to determine C, let us evaluate the pressure on the stamp and let us 

equate it to the external force P. According to (1.10) we have 

3. The equations (2.2) can be solved by different approximate methods. The sim- 
plest is probably the small parameter method. If we set yh = u and then h-i = p 
(therefore p is the ratio of the stamp radius to the layer thickness), then the kernels 

nIij (5, t) are easily expanded in a power series in p. 
For example 

rrri (5, t) = 4 1 3 k PII (r) p cos (ptu) cos (pxu) du = (3.1) 

0 

$.I P,,(r)p[cosp(x+t)u+GOSp(x--t)U]dU= 

pal k p3a3 + p5a, + . . . + p2n+1a2n+I + . . . 

anntl = $$-$ Mzn (z, t) j PII (u) ZLS~ du 
0 

J42n(34 t) = f [(t + 2)2n + (t - s)2"] 

If 1 p 1 < 1, the convergence of the series (3.1) can be proved by using the relationships 

1 P,, (u) 1 < Mu2e-2u (M = const), I M,, (x, t) I < 22n-1 + 1 
00 . s U2ntZe-2udu = '"~,~F' 

0 

An analogous expansion is obtained in the domain I p I < 1 for the kernel II,, (5, t). 
Similar expansions are valid for the kernels n,, (z, t) and III,, (z, t) only in the 

domain Ip I < l/z. This is associated with the fact that the functions p!,, (y) and 

P,r (Y) have different asymptotics than the functions P,, (y) and P,, (y) for infinitely 
large u = yh. 
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Evaluation of the integrals o. 

s 
Pi j~mdU _ fij(m) 

0 

was carried out on the “Iskra-11” electronic computer for the first three values of the 
exponent m . The range of integration was divided into two parts: /(), 6] and 16, co). 

The integral over the finite part was computed by the Simpson formula with 48 nodes 
while the functions Pij were approximated in the infinite part by simpler functions, 
mostly elementary ones. The approximation was accomplished every time so that the 

integrals were calculated to 0.001 accuracy. 
The results of the calculations are (j,, (m.) z f12 (~)) 

II,, (f. 2.) 4.92!1 p2 - 9.273 (t” - 3ts”)p.” + . . . 
B7,, (t, x) :~_ fi.572p2 - 12.364 (29 -i- 3x”t) p3 + . . . 
II,, (t, 2”) -= - w5032rtp” -I- 0.218 (4P.E .-i- 4i.r’) p5 - . . . 

It is evidently sufficient that 

for the iteration process to converge. 

Using the values of the integrals fij (m) it can be shown that CC < 1 if 1 i, 1 ( 0.3. 
Under this condition the successive approximations converge uniformly in the domain 

1 p f < 0.3, and since these approximations are analytic functions of p in the domain 

mentioned, then the solution is also analytic in p because of the known Weierstrass theo- 

rem. Hence, in the case 1 p ( < 0.3 the solution of the problem can be sought at once 

as a power series in p. 
Therefore, some of the first terms of the expansions of the desired functions have been 

obtained 
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Two kindred problems on the compression of an elastic layer by a local load 
applied symmetrically to its surfaces are considered. 

In one case the layer has an annular crack with inner radius a and outer radius 

b on the middle plane. The quantities a and b (0 < a < b) are selected from 
the condition that the annular crack subjected to a load would be opened up and 
a normal tensile stress concentration would originate on the circumferential con- 
tours 7 = n and r = 0 . 

In the other case, the layer has a circular crack of radius b on the middle 
plane. Under the effect of a load in a circular domain of radius a (a < b) the 

crack edges will be in contact, and will separate from each other in the annular 
region (1 < 7 < b . The quantity a is unknown and to be determined from the 
condition that the contact pressure on the circumferential contour r = n is zero; 

the quantity b is selected from the condition that a normal tensile stress concen- 
tration would originate on the contour r = h . 

In both cases the crack lips are assumed smooth. The crack is a mathematical 
slit in the unloaded layer. 

In the general case, the layer is compressed under the effect of an arbitrary 
local load applied to its upper and lower boundary planes symmetrically relative 
to the axis and the middle plane. As an illustration, the particular case of com- 
pression of the layer by two normal concentrated forces directed along the axis 
of symmetry of the problem is considered (Fig. 1). 

The problems of annular and circular cracks in an infinite layer were considered 


